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Abstract - Efficient and accurate behavioral modeling of 
RF power amplifiers with memory effects becomes of critical 
importance in the system-level analysis and design of wide 
hand digital communication systems. lo  this paper, we 
present a novel Volterra-based behavioral model 
implemented through a bank of parallel FIR filters, the 
coefficients of which may be readily extracted from time- 
domain measurement or circuit envelope simulation. This 
model can reproduce the nonlinear distortion of power 
amplifiers with memory effects excited by wideband 
modulated signals with better accuracy compared to 
conventional quasi-memoryless models. 

I. INTRODUCTION 
In system-level simulation and design, behavioral 

models are often employed to predict the distortion 
created by nonlinear components. In these models, the 
nonlinear components are characterized in terms of input 
and output complex envelopes using relatively simple 
mathematical expressions. Behavioral modeling 
techniques provide a convenient and efficient means to 
predict system-level performance without the 
computational complexity of full circuit simulation or 
physical level analysis of nonlinear systems, thereby 
significantly speeding up the analysis process. 

Behavioral modeling for RF power amplifiers has 
received much attention from many researchers in recent 
years. Most approaches are based on AM/AM and 
AMPM models or polynomial memoryless models, or ’ 
else suboptimal approximate systems. These methods are 
not sufficiently accurate for future wideband 
communication systems, especially with complex 
modulated signal systems. In recent decades, a truncated 
Volterra series model [l] has been used by a number of 
researchers to describe the relationship between the input 
and the output of a nonlinear system with memory. 
However, high computational complexity makes methods 
of this kind impractical for real-time implementation. 

In this paper, we present a Volterra-based modeling 
technique for wideband RF power amplifiers, which 
utilizes novel concepts such as V-vector algebra [2] and 
multi-channel embedding [3] to implement a fast parallel 
nonlinear Volterra filtering algorithm [4][5]. This 
approach dramatically reduces computational complexity, 
and allows reproduction of both transient and steady-state 
behavior of RF power amplifiers with good accuracy. 

The remainder of the paper is organized as follows. The 
principles of a new modeling technique are first outlined 
in section 11. Then section I11 gives the model extraction 
methodology. Application the new behavioral model to a 
wideband LDMOS class AB power amplifier is described 
in section IV. Comparisons with the measurement results 
and conventional quasi-memoryless models are also given. 
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11. MODEL PRINCIPLE 
Well-established techniques for narrowband system 

level modeling (such as using AM/AM and AM/PM 
curves) can fail in the case of simulation of wideband 
signals because the output response of the power amplifier 
at a given instant depends not only on the input signal at 
the same time instant but also the input signal at preceding 
instants over a limited duration, leading to so-called 
“memory effects”. A Volterra series resembles a Taylor 
series expansion, and can he used to represent a wide class 
of time-invariant nonlinear systems with memory effects. 
Consider X( , )=qa( , ) . e~w]and r(,) = ~ ~ [ f ( g . ~ ” ~ ]  as the 

input and output signal of a power amplifier, where onis 
carrier frequency and B(r) and f ( r )  represents the 
complex-valued envelopes of the input and output signal, 
respectively. 

Using A/D conversion, a discrete time-domain finite- 
memory complex baseband Volterra model has the form: 

(1) 
Ben) = & ( 1 )  x x (ti - ;) 

,-o 

where h,(i,,;2 ,... ;,) is the lth-order Volterra kernel, m, 

represents ‘the “memory” of the corresponding non- 
linearity, (.)’represents the conjugate transpose and 7(n)is 

the unmeasured disturbance. In the above equation, we 
have removed the redundant items associated with kernel 
symmetry, and also the even-order kernels, whose effects 
can be omitted in band-limited modulation systems. 

The outputs of a Volterra model are linear with respect 
to the kernels, and hence many fast least square (LS) 
adaptive algorithms for Volterra systems may he 
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implemented using the same general procedure as would 
be employed for conventional linear digital filters with the 
exception that the input vectors must be expanded and 
redefined appropriately [6]. However, due to the loss of. 
the time-shift property in the input data vector, direct 
application of linear adaptive algorithms to the Volterra 
case can significantly increase the computational 
complexity, which is a critical issue for many real-time 
applications. A novel non-rectangular stmcture matrix, 
shown in Fig. I ,  termed the 'V-vector', has been 
developed [2] which can preserve the linear time-shift 
property for non-linear data vectors thereby :voiding the 
complex permutations that would otherwise be required. 
Recently, this has been used successfully for distortion 
compensation [7]. Using V-vector algebra, we can write 
(1) as 

F(n) = $2" (2) 
where (.I" represents the Hermitian transpose of(.), while 

enandfn are the Volterra filter coefficients (kernels) and 
the input data V-vector, respectively. 

V-vector algebra, the new Volterra model inherits a time- 
shift invariance property (e.g. in every separate row of the 
input data vector fn in Fig. I.)  which allows implementa- 
tion of the nonlinear system by a group of parallel linear 
sub-systems, such as transversal FIR filters. We can define 
a set of primary signals that carry all the information 
needed for the estimation of the convolution, 
corresponding to the fust column of the input data V- 
vector f", and then use an FIR filter to implement the 

convolution for each row of ,fm separately. Summing 
together all the filter outputs, the final output of the 
Volterra behavioral model is obtained, as shown in Fig. 1. 
The primary signals are computed recursively from lower 
order products. This kind of parallel fast algorithm 
significantly improves the data processing speed and saves 
on computation time. Furthermore, this kind of time- 
domain envelope behavioral model may be readily 
embedded in most commercial CAD tools to reproduce 
the transient and static responses of power amplifiers. 

111. MODEL EXTRACTION 

Fig. I A Volterra-Based Behavioral Model 

Direct evaluation of the solution of (2) still requires a 
massive convolution at each instant [3]. However, using 

been introduced in Section 11. This section focuses on the 
model extraction methodology. The block diagram for 
model extraction is shown in Fig. 2. The complex 
enGelope signals from the input and output of a power 
amplifier are fed into an adaptive filter to estimate the 
coefficients of the filters, which are in effect the Volterra 
kemels. When the system converges, the extraction 
process is finished. By copying the coefficients of the 
adaptive filter, the behavioral model is obtained. This type 
of modeling technique is nowadays easily carried out 
using envelope transient analysis in most CAD tools [SI or 
else using time-domain measurement [9][10]. 

By using V-vector algebra, the time-shift property of 
non-linear Volterra data vectors is preserved. Hence, in 
principle, any linear parameter estimation methodology 
can be utilized to extract the nonlinear Volterra kernel (the 
coefficients of the FIR filters in the behavioral model). 
However, in higher-order Volterra systems, directly 
updating the coefficient vector becomes very difficult 
even employing fast filtering algorithms because the 
matrix size of the coefficient and input data vectors 
increases quickly both with the order of the Volterra 
kernel and the memory length of the nonlinear system, and 
therefore the computational complexity required per 
iteration increases dramatically. In the section above, we 
have decomposed the Volterra model into a group of 
parallel transversal FIR filters. It is natural to utilize a 
parallel data processing technique [5] to update the 
coefficients of the filters during the leaming period as well, 
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Fig. 2 Block Diagram for Model Extraction 

In adaptive filters, the recursive least-square (RLS) 
algorithm is known to have very good convergence 
characteristic, and many fast RLS algorithms have been 
developed [4]. Generally, the objective of the 
exponentially-weighted RLS filter is to select the optimal 
coeficient $(n)  in such a manner that the cost function 
defined by 

J ( n )  = 1 L"-'(d(k) - Pk" ( n ) f ( k ) ) '  (3) 
kk, 

is minimized at each time instant. In this formulation, 
d(&)is the desired signal, and,? is a constant that controls 
the speed of convergence of the adaptive filter and 
0 5 15 I ,  The solution to the minimization problem in (3) 
can be found by differentiating  with respect to e(,,), 
setting the derivatives to zero, and solving the resulting set 
of simultaneous equations. In a Volterra model with many 
kemels, direct updating of e(,,) involves large matrix 
multiplications and inversions. However, partitioning 

andp(n) into several smaller sub-vectori [ 5 ] ,  e.g. one 
sub-vector for each order, the matrix size used for 
updating the filter coefficients becomes smaller, thereby 
reducing the computational complexity. Thus the problem 
is changed to one of minimizing J , (= )  in every sub-filter. 
To minimizej,/;(,), we need to know the error signaler(,) 
in the sub-filter. In a practical situation, we do not 
know e , ( n )  because the desired signal d,(,,)in the sub-filter 
is not available. But we can compute the overall system 
output signal P(n) by summing the outputs of all the sub- 
filters. We can then subtract ?(") from &,) to get e ( n ) ,  

and update all the sub-filters using e ( n ) .  In other words, 
assume e, (n) = e(n)  for all sub-filters. Then we can utilize a 
fast RLS filtering algorithm for every sub-filter to update 
their coefficients independently and concurrently, which 
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significantly saves the computational time required per 
iteration. However, by replacing e,(n)  by , the 
convergence rate of this parallel filtering algorithm will he 
slower compared with a direct use of the fast RLS 
algorithm. In real applications, we would need to trade off 
between the computational complexity and convergence 
speed required. 

IV. MODEL VALIDATION 
In order to validate the proposed model extraction 

methodology, the new model is tested by a LDMOS class 
AB medium power amplifier with noticeable memory 
effects at 2.14 GHz excited by downlink 3GPP W-CDMA 
signal of 3.84 Mcps chip rate and peak-to-average power 
ratio equal to 6.0 dB @ 0.01% probability on CCDF. The 
test bench setup uses the ADS-ESG-VSA connected 
solution from Agilent Technologies [IO], shown in Fig. 3. 

Fig. 3 The Experimental Test Bench 

The baseband VQ signals are generated from Agilent 
ADS software running on a PC, and downloaded to an 
Agilent E4438C ESG vector signal generator. This test 
signal is then passes through the DUT and into an Agilent 
E4406A vector signal analyzer (VSA). The DUT output 
test signal is then read from the E4406A VSA hack into 
the ADS simulation environment using the Agilent 
X9601A VSA software, which is dynamically linked from 
within ADS. A S"-order Volterra-based behavioral model 
of a power amplifier is extracted from the measurement 
input and output baseband complex envelope signals, and 
implemented in Matlab software from Mathworks Inc. 

The time-domain output envelope waveform of W- 
CDMA signal is shown in Fig. 4. The average NMSE 
(normalized mean square error) [ l l ]  is up to -37dB, 
where an improvement of over 12 dB is gained hy the new 
model, compared to the AWAM AM/PM model. The 
frequency-domain spectra of the power amplifier output 
signal to W-CDMA excitation is shown in Fig. 5 .  The gain 
and ACPR performance of the power amplifier are given 
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in Table I. Compared to the measurement results, the 
superior prediction of the amplifier nonlinear performance 
by the new model is clearly visible. A large improvement 
also has been made with respect to the classical AM/AM 
AMPM model. 

8 4 8 ,  
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Fig. 4 Time-domain waveform amplitude of PA 
output with W-CDMA input signal 

Performanee 

Gain (dB) 

y(dBf +/-5MHz yCdBc,) 
+/-loMHz 

Fig. 5 Frequency-domain spectra of PA output 
with W-CDMA input signal 

AM1AM New 
AWPM Bchaviaral 
Model Model 

13.19 13.16 13.17 

43.47144.35 40.03140.00 43.27144.53 

56.52157.38 54.66154.62 56.44157.00 

Measurement 
Resulls 

V. CONCLUSIONS 
An efficient Volterra-based modeling technique has 

been proposed. It can accurately reproduce nonlinear 
distortions of a power amplifier, including memory effects, 

allowing use of this modeling approach under wideband 
complex modulated signal applications. The extraction of 
the proposed model is simple and affordable either 
through circuit-level simulation or through calibrated 
time-domain envelope measurements. The model can also 
be readily embedded in most commercial CAD 
environments. Furthermore, the structure of this model is 
also naturally suited for baseband digital predistorter 
design [7] for high power amplifiers with memory effects 
since the roles of the input and output measurements can 
then be reversed, leading to a situation where the new 
model represents the inverse of the power amplifier’s 
nonlinear characteristics. 
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