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Abstract  —  The requirement for an estimation of a large 
number of parameters is a major limitation in using the Volterra 
series to model nonlinear RF power amplifiers. In this paper, we 
propose a new behavioral model for power amplifiers by 
projecting the classical Volterra series onto a set of Orthonormal 
Basis Functions (Laguerre functions). This approach enables a 
substantial reduction in the number of parameters involved, and 
allows the reproduction of both transient and steady-state 
behavior of power amplifiers with excellent accuracy. 

Index Terms — Volterra series, Laguerre functions, power 
amplifiers, behavioral modeling.

I. INTRODUCTION

Behavioral modeling of RF/microwave circuits and systems 

has received much attention from many researchers in recent 

years [1]. In behavioral modeling, the nonlinear component is 

generally considered as a "black-box", which is completely 

characterized by external responses, i.e., in terms of input and 

output signals, through the use of relatively simple 

mathematical expressions. Behavioral modeling techniques 

provide a convenient and efficient means to predict system-

level performance without the computational complexity of 

full circuit simulation or physical level analysis of nonlinear 

systems, thereby significantly speeding up the analysis process.  

RF power amplifiers (PA) play a crucial role in wireless 

communication systems. Up to date, most PA behavioral 

models have been based on AM/AM and AM/PM conversions 

or polynomial memoryless models, or else suboptimal 

approximate systems. These methods are not sufficiently 

accurate for future wideband communication systems, 

especially with complex modulated signal systems. This is 

because the output response of the power amplifier at a given 

instant depends not only on the input signal at the same time 

instant but also on the input signal at preceding instants over a 

significant duration, leading to so-called “memory effects”.  

A truncated Volterra series model [2][3] has been used by a 

number of researchers to describe the relationship between the 

input and the output of a nonlinear system with memory. 

Many Volterra based PA behavioral models also have been 

proposed [4][5]. However, high computational complexity 

makes methods of this kind impractical in some real cases, e.g., 

modeling a PA with strong nonlinearities or with long-term 

memory effects. This is because the number of coefficients, 

which are needed to be estimated in the model, exponentially 

increases with the degree of the nonlinearity and with the 

“memory length” of the system.    

In this paper, we present a new Volterra-based modeling 

technique for wideband RF power amplifiers, by projecting 

the classical Volterra series to an Orthonormal Basis Function 

(OBF), namely, the Laguerre function. In this model, the 

number of parameters is independent of the memory length, 

and much smaller than that required in classic Volterra models. 

The remainder of the paper is organized as follows. The 

principle of the Volterra expansion with Laguerre functions is 

first outlined in section II. Then section III gives the model 

extraction methodology. Application the new behavioral 

model to a wideband RF power amplifier is described in 

section IV.  

II. VOLTERRA EXPANSION WITH LAGUERRE 

FUNCTIONS 

The Volterra series is extended from nonlinear power series, 

and combined with linear convolution. A discrete-time 

truncated Volterra model is generically described as  
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where ( )x n and ( )y n is the input and the output of the system, 

respectively. The
1( , , )k kh m m is the kth order Volterra 

kernels, associated with the system’s kth order nonlinearities, 

and ( )e n is the modeling error. Q  and M is the truncated 

order of nonlinearities and the “memory length”, respectively. 

A Volterra model has a clear nonlinearity structure which is a 

natural extension from a linear impulse response model. 

Furthermore, the Volterra model is linear in terms of its 

parameters and hence linear system identification algorithms 

can be employed to extract the model. However, in this 

approach, the elements of the Volterra kernels are simply 

treated as individual parameters, i.e., Dirac impulse responses, 

to be estimated. This may be not a very efficient description of 

the expected output since impulse responses tend to decay 

linearly over time. Therefore the truncated “memory 

length” M , directly depends on the duration of actual memory 

in the system. It is thus clear that M must be chosen large 

enough to include all “memories” which affect the output 

response of the system. Otherwise the approximation error 

would become too large and the dynamic representation of the 

model would be poor. This leads to the huge number of 

parameters that must be estimated in order to identify the 

system, which sometimes limits the practical usefulness of the 

Volterra model.  
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In linear system identification, Orthonomal Basis Functions 

(OBF), like the Laguerre functions, have been employed by 

some researchers as a means to reduce the number of 

parameters needed for the model construction.  

In the Laguerre model, the basis functions, i.e., Dirac 

impulses, in the FIR filter are replaced by more general and 

complex orthonormal functions { ( )}k m , which decay 

exponentially to zero at a controllable rate. The discrete time 

Laguerre functions { ( )}k m are defined by their -transform 

according to  
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where  is the pole of the Laguerre functions and 1 ,

and represents the conjugate transpose. Thus, a linear 

model based on the Laguerre functions can be described as 

follows 
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where 
kb is the kth regression coefficients, and ( , )kL z is the 

kth discrete Laguerre function given by (2). Note that when 

0 , the resulting filter is the common transversal FIR filter.  

The linear Laguerre model can be re-written as  
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An implementation of the Laguerre filter is depicted in Fig. 1. 

From Fig.1, the Laguerre model (3) can be interpreted as 

discrete filters where the first section represents a first-order 

low pass filter
0 ( , )L z  , followed by ( 1)k all-pass 

sections ( , )B z . Since the Laguerre functions are 

orthogonalized exponentials, unlike the transversal FIR 

structure, the parameters { }kb  in (4) do not depend on the 

order L . Laguerre-based models give good performance for 

systems with low frequency characteristics, e.g., an RF power 

amplifier with long-term “memory effects”.  

Based on Laguerre functions, Zheng and Zafiriou [6] 

expanded the kernels of a Volterra series model in chemical 

control systems. In this paper, we further extend that idea by 

formulating the Volterra model using complex Laguerre 

functions to model an RF power amplifier at the system level. 

Consider 0( ) ( )
j t

x t e X t e and 0( ) ( )
j t

y t e Y t e as 

the input and output signal of a power amplifier, where 
0
is

carrier frequency and ( )X t and ( )Y t represents the complex-

valued envelopes of the input and output signal, respectively.  

Using A/D conversion, a discrete time-domain finite-

memory complex baseband Volterra model has the form:  
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where 
1 2, ,l lh i i i is the lth-order Volterra kernel, M

represents the “memory” of the corresponding nonlinearity, 

 represents the conjugate transpose. In the above equation, 

we have removed the redundant items associated with kernel 

symmetry, and also the even-order kernels, whose effects can 

be omitted in band-limited modulation systems.  

Assuming that the Volterra kernels 
1 2, ,l lh i i i in (9) have a 

fading memory, i.e., they are absolutely summable on the 

system memory[0, ]M , then they can be approximated by a 

complete basis { ( )}k m  of Laguerre functions defined over 

[0, ]L  [6]. For instance, 
1

1 1

0

( ) ( ) ( )
L

k

k

h i c k i     (10) 

1 2 3

1 2 1 3

1 1 1
*

3 1 2 3 3 1 2 3 1 2 3

0 0

( , , ) ( , , ) ( ) ( ) ( )
L L L

k k k

k k k k

h i i i c k k k i i i   (11) 

are the expansions for the first- and third-order kernels. These 

expansions are extended to all kernels present in the system. 

Then the Volterra model becomes 
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and
1 2( , , , )p pc k k k are the kernel expansion coefficients.  

Note that the variable ( )kl n  is a weighted sum of the input 

epoch values (i.e., discrete convolution). It is obvious that the 

accuracy of the model depends on the number, L , of the basis 

functions. However, when compared with using the classic 
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Fig.1. Laguerre filter of order L 



Volterra model, an appropriate selection of the Laguerre basis 

functions provides a great reduction in the number of 

parameters needed to model a nonlinear system to achieve the 

same accuracy. Implementing the nonlinear Laguerre model is 

easily achieved by means of a “nonlinear combiner” summing 

all weighted product term combinations, as shown in Fig.2. 

III. MODEL EXTRACTION

As far as the model structure is decided, two important 

issues are: the selection of the parameters  and L . In relation 

to the number of functions, the ideal selection of L  is the one 

that leads the truncation error to be equal to or tending to zero. 

However, in practice this selection depends on the complexity 

of the system and it is possible to increase the model quality 

by increasing the number of functions. The choice of the 

orthonormal basis pole  is not critical since the basis is 

complete for all . However, an adequate choice can lead to a 

more efficient representation of the system since the better the 

pole choice, the faster will be the convergence of the series 

and the number of functions can be decreased. Usually, the 

pole is selected using a priori knowledge of the dominant 

dynamic of the system, such as, for example, considering the 

shape of its time or frequency response. How to optimize the 

pole is outside the scope of this work, and we follow the 

criterion proposed in [7] for Laguerre function pole 

computation. 

When the pole  is determined, the next step is to find the 

coefficients
1 2( , , , )p pc k k k  in (12). As in a Volterra model, 

the output of the Laguerre based model is linear respect to the 

coefficients
1 2( , , , )p pc k k k  . Consequently, one possible 

approach to the model parameter estimation problem is to treat 

it as a large but standard regression problem. In particular, we 

could form a single large parameter vector  containing all of 

the unknown 
1 2( , , , )p pc k k k and define the matrix 

X containing all of the product terms 
1 2

*( ) ( ) ( )
pk k kl n l n l n

appearing in the model for 1, ,n N , where N  is the total 

length of the available data record. With these definitions, the 

Volterra-Laguerre model is re-written as  
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where [ (1), , ( )]HY Y Ny and [ (1), , ( )]He e Ne , where 

( ) ( ) ( )e k d k Y k , ( )d k is the desired output and  H

represents the Hermitian transpose. 

A popular solution to this problem is the least squares

method, in which  is estimated as that value ˆ  minimizing 

the model error criterion 
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 It is a standard result that the estimate minimizing this 

criterion is: 
1ˆ ( ) ( )H Hn X X X d   (16) 

where [ (1), , ( )]Hd d Nd .

Other linear adaptive techniques, including the RLS 

(Recursive Least Squares) and the LMS (Least Mean Squares) 

algorithms, also can be employed to estimate the model 

parameters.  

IV. MODEL VALIDATION 

In order to validate the proposed behavioral model, we test a 

class AB medium power amplifier, which has noticeable 

memory. This power amplifier is operated at 2.14 GHz and 

excited by downlink 3GPP W-CDMA signals of 3.84 Mcps  

chip rate and peak-to-average power ratio equal to 6.0 dB @ 

0.01% probability on CCDF. The test bench setup uses the 

ADS-ESG-VSA connected solution from Agilent 

Technologies [8]. The baseband I/Q signals are generated 

from Agilent ADS software running on a PC, and downloaded 

to an Agilent E4438C ESG vector signal generator. This test 

signal is then passes through the DUT and into an Agilent 

E4406A vector signal analyzer (VSA). The DUT output test 

signal is then read from the E4406A VSA back into the ADS 

simulation environment using the Agilent 89601A VSA 

software, which is dynamically linked from within ADS. 

Around 5000 sampling data points are captured from the input 

and output envelope signals of the PA. 

In this example, we truncate the Volterra model to fifth 

order. After optimization, we choose =0.2 and L =3. Only 

81 parameters are needed to be estimated.  

A comparison between the actual measured data and the 

waveform computed by using the Volterra-Laguerre 

behavioral model is presented in Fig. 3.  It can be seen that 

these two sets of data are very close. The average NMSE 

(normalized mean square error) is up to -37.5 dB, the 

maximum relative error is 0.05 %. To achieve the same 

accuracy, the classic Volterra models use 244 to 605 

parameters [5]. A substantial reduction of the number of 

model parameters is obtained by an appropriate selection of 

the orthonormal functions. 

The frequency-domain spectra of the power amplifier output 

signal to W-CDMA excitation is shown in Fig. 4. The ACPR 

performance are given in Table I. Compared to the measured 

Fig.2. Structure of a Volterra-Laguerre model  
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results, the superior prediction of the amplifier nonlinear 

performance by the new model is clearly visible.  
V. CONCLUSION

The advantage in using a Volterra-Laguerre expansion 

model over the conventional Volterra series model lies in the 

fact that the the number of parameters in a Volterra-Laguerre 

model is independent of the system memory M , and the order 

of Laguerre functions L  is usually much smaller than M .

Therefore, the number of parameters to be estimated can be 

reduced significantly.  

This efficient Volterra-Laguerre based modeling technique 

can accurately reproduce nonlinear distortions of a power 

amplifier, including memory effects, allowing use of this 

modeling approach under wideband complex modulated signal 

applications. The extraction of the proposed model is simple 

and affordable either through circuit-level simulation or 

through calibrated time-domain envelope measurements. The 

model can also be readily embedded in most commercial CAD 

environments.  
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Fig.3. Sample of time domain waveform 

Performance
ACPR(dBC)

(+/- 5MHz) 

ACPR (dBC) 

(+/- 10MHz) 

Measured -36.8/-35.9 -57.1/-56.0 

Modeled -36.7/-36.1 -57.0/-56.4 

Table I. Measured and modeled ACPR performance 

Fig.4. Spectra of the PA output 
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